[image: C:\Users\mike.harmony\AppData\Local\Microsoft\Windows\INetCache\Content.Word\snap-av-logo.jpg]

[bookmark: _Hlk503167624]
SnapAV Binary MoIP Controller Integration Protocol Document
Integration Protocol v1.0 rev20180116
[bookmark: _GoBack]Firmware 1.0.0.0
Overview 
	This integration protocol details how a third-party system can be used to control a SnapAV Binary MoIP Controller. With the controller online, the integration protocol will be listening for connections on port 23 at the controllers IP address. NOTE: 10 simultaneous connections can be made at a time. To get started, netcat or similar software can be used to initiate a connection and test any of the following protocol commands below.

Specification
	THIRD-PARTY SYSTEM <-----------------------------------------------> SnapAV Binary MoIP Controller
				i.e. MoIP IP: 192.168.0.20 Port: 23
Integration
	 Message Structure 

	Command and response messages are standard ASCII text. 

	? – Request message

	! – Control message

	# - Error message

	~ - Unsolicited message

	\n – End of command message, ASCII hex: 0x0A dec: 11 



Protocol
	 Protocol Command 
	Description/Response 

	?Firmware\n
	Request Firmware Version.

Response: ?Firmware=1.0.0.0\n

	?Receivers\n
	Request all Receivers current inputs.

Response: ?Receivers=1:3\n
Where 1 is the TX and 3 is the RX. This will be comma delimited for multiple devices.

	?Devices\n
	Request TX and RX count.

Response: ?Devices=1,4\n
Where 1 is the TX count and 4 is the RX count.

	?Name=T\n

Where T is 0/1
	Request the names for either TX or RX. To request all the TX names, use 1 for the payload. To request all the RX names, use 0 for the payload. The response will be new line delimited for multiple devices where each lines format is as follows:
?Name=MODE,INDEX,NAME.

Request for TX: ?Name=1\n
Response for TX: ?Name=1,1,TX-D46A9121000B\n

Request for RX: ?Name=0\n
Response for RX: ?Name=0,1,RX-D46A91210620\n
?Name=0,2,Basement TV\n
?Name=0,3,Living Room TV\n
?Name=0,4,RX-D46A91210604\n

	!Switch=TX,RX\n

Where TX is the index of the Transmitter you want to switch and RX is the index of the Receiver you want the switch to happen on.

	Switches the input on a Receiver to the desired Transmitter.

Request to switch to Transmitter 1 on Receiver 2: !Switch=1,2\n
Success Response: OK\n
Error Response: #Error

	!Resolution=RX,R\n

Where RX is the Receiver you’d like to change the resolution of and R is one of the following:
 0 = Pass through resolution from the source.
 1 = 1080p 60Hz
 2 = 1080p 50Hz
 3 = 2160p 30Hz
 4 = 2160p 25Hz
	Changes the resolution on a given Receiver.

Request to switch Receiver 1’s resolution to Pass-Through: !Resolution=1,0\n
Success Response: OK\n
Error Response: #Error

	!OSD=RX,MSG\n

Where RX is the Receiver index you’d like to display MSG on. MSG must be plain ASCII Text. 
	Displays a plain text message on the display of the given Receiver.

Request to display “Hello World” on Receiver 1: !OSD=1,Hello World\n
Success Response: OK\n
Error Response: #Error

NOTE: To clear the text, send !OSD=1,CLEAR\n

	!Reboot\n
	Request to reboot the MoIP controller.

Reboot Controller Request: !Reboot\n
Success Response: OK\n
Error Response: #Error

	!CEC=RX,MODE\n

Where RX is the Receiver index you’d like to control CEC on and MODE is one of the following:

 0 = CEC OFF
 1 = CEC ON
	Controls CEC for a given Receiver. MODE must either be 0 for OFF or 1 for ON. 

Request CEC Off on Receiver 1: !CEC=1,0\n
Success Response: OK\n
Error Response: #Error

	!Serial=TYPE,INDEX,BAUD,DATABITS,PARITY,STOPBITS,DATA\n

 type: 0 = output (RX), 1 = input (TX)

index: device to send
baud: integer baudrate
data bits: 5, 6, 7, 8
parity: n = none, e = even, o = odd
stop bits: 1, 2

data: hex data to send


	Sends serial data to RX or TX serial port.

Send to TX 2 at 9600-8n1 the characters "abc": !Serial=1,2,9600-8n1,61 62 63
Success Response: OK\n
Error Response: #Error\n

	~Serial=TYPE,INDEX,DATA\n

TYPE: 0 = output (RX), 1 = input (TX)
 INDEX: device to send
 DATA: hex data received
	Unsolicited serial data to the connected client. This data will be sent over the protocol without a request. The third-party system should always be handling these incoming messages.

TX #2 sent characters "abc": ~Serial=1,2,61 62 63

	#Error\n
	Sent whenever an invalid command was received or an internal device error has occurred. 

Consider this example with only 2 connected Transmitters and 5 connected Receivers:

Request to switch Transmitter 2 to Receiver 6: !Switch=2,6\n
Response: #Error

Receiver 6 does not exist, therefore an error is returned.



image1.jpeg

